Мэтью Барроуз

Мэтью Барроуз

(Выдержки из книги Мэтью Барроуза «Будущее: рассекречено. Каким будет мир в 2030 году". Публикуется совместно с издательством "Манн, Иванов и Фербер")

СингулярностьСегодня мы переживаем новый переломный момент, и трудно предсказать в полной мере масштаб ожидающих нас изменений или их последствия. Мы не просто исследуем сотворение, как это было во времена Дарвина. Сегодня мы можем изменить саму природу человека. Иными словами, нам теперь не нужно ждать, пока Бог или естественный отбор сделают свое дело. С другой стороны, как заметил Рэй Курцвейл, автор книги «Сингулярность действительно близко»: «Понимая информационный процесс, лежащий в основе жизни, мы начинаем учиться перепрограммировать нашу биологию, чтобы суметь на виртуальном уровне положить конец болезням, добиться невероятного роста человеческих возможностей и заметного продления продолжительности жизни».

И дело не только в том, что биологические науки шагнули на новый уровень. Эту технологическую революцию характеризуют конвергенция и синергия нескольких масштабных технологий — а именно нано-, био-, ИТ, 3D-печати, искусственного интеллекта, новых материалов и робототехники. Звучит пугающе, особенно в свете других перемен, происходящих сегодня: появление людей, обладающих огромной властью, и раздробленный мир, в котором становится все больше могущественных государств, не принимающих общие ценности и принципы. Мой опыт работы в разведке заставляет меня видеть всевозможные ловушки и нежелательные последствия. Прежде чем я изложу вам все потенциальные негативные стороны, взглянем на основные плюсы новых возможностей.

Впервые ощущение, что грядет что-то совершенно новое, посетило меня, когда я начинал работать над проектом «Глобальные тенденции» и отправился на конференцию послушать презентацию врача из клиники Джона Хопкинса. Речь шла об имплантах и протезировании, призванных помочь возвращающимся из зон военных действий солдатам с ампутациями и парализованными конечностями. Имплантированный в мозг микрочип используется для управления роботизированной рукой. Имплант принимает сигналы мозга пациента, расшифровывает их и через кабельное соединение двигает роботизированной рукой. В будущем ученые надеются, что это соединение станет беспроводным. По словам ученых из Института мозга Браунского университета, главная цель — восстановить подвижность собственных конечностей пациента. Джеффри Стибел, президент компании Braingate, разработчика технологии мозгового компьютерного интерфейса, рассказал о прогрессе в сфере восстановления потерянного зрения: «У вас будет мозговой имплант, соединенный с прибором, похожим на солнечные очки. Очки, собственно, и делают то, что мы делаем, когда смотрим, только в этом случае сам смотрящий слеп и очки передают информацию через компьютерный чип напрямую в мозг, чтобы у человека появилось ощущение, будто он действительно что-то видит. Это работает». По мнению Стибела, впереди еще много работы по усовершенствованию имплантов, но мы уже на пути к вселенной, где «разум превыше материи». Экзоскелеты — еще одно изобретение, расширяющее наши физические возможности. Как правило, они состоят из внешнего каркаса, который прикреплен к ногам солдата. При помощи системы, приводимой в движение моторчиками или гидравликой, солдаты могут переносить тяжелые грузы — до 100 кг. По сообщениям в прессе, компания Lockheed Martin испытывает модель, которая сможет обеспечить 72 часа бесперебойной работы.

Со временем, когда технология производства аккумуляторов шагнет вперед, ограниченное количество электроэнергии перестанет быть сдерживающим фактором. Подобные экзоскелеты создаются для того, чтобы преодолеть ограничения солдат. Как и мозговые импланты, призванные расширять ментальные возможности, экзоскелеты расширяют возможности физические. На сегодняшний день создаются экзоскелеты и для увеличения физической силы верхней части корпуса. Усиление человека позволит гражданским и военным работать более эффективно и в таких средах, которые раньше были недоступны. Пожилым людям могут быть полезны механизированные экзоскелеты, помогающие в простой деятельности (ходьба, подъем тяжестей). Это улучшило бы здоровье и качество жизни стареющего населения. Успешные разработки в области протезирования, возможно, будут напрямую интегрированы в человеческое тело.

Мозговые компьютерные интерфейсы могут предоставить сверхчеловеческие возможности, увеличить силу и скорость, а также выполнять функции, ранее человеку недоступные . Так, например, из мозга могут посылаться сигналы, которые, минуя поврежденные фрагменты спинного мозга, будут активизировать нервы в неработающих руках или ногах. По мере того как развивается технология замены конечностей, у людей появится возможность расширить свои физические способности (так же, как с помощью пластической медицины в наши дни улучшают внешность). Будущие импланты в сетчатку глаза дадут нам возможность видеть ночью, а неврологические усовершенствования могли бы снабдить нас лучшей памятью или скоростью мысли. Нейрофармацевтика позволит людям сосредоточиваться на более длительные промежутки и улучшить способность к обучению. Это был бы шаг, опережающий нательный компьютер Google Glass с прозрачным дисплеем, который крепится на голову и позволяет человеку иметь постоянное соединение с интернетом. Системы дополненной реальности — например, те, что повышают интеллект или улучшают способность видеть в темноте, — могут существенно расширить ваши умственные или физические возможности и скорость, что позволит лучше справляться с ситуациями в реальной жизни. Стоит ли говорить, как в таких возможностях заинтересованы военные!

Мэтью БарроузВ недавнем исследовании, проведенном вашингтонским Центром новой американской безопасности, отмечается: Министерство обороны США выразило некоторую озабоченность в связи с «расширением возможностей человека» за рамки базовых, но «есть признаки того, что некоторые страны планируют запустить программы, направленные на это. США таких намерений не имеет». Для расширения человеческих возможностей продвинутая робототехника будет так же важна. Я убедился в этом во время визита в Кремниевую долину. Ее компании могут обеспечить столь необходимую физическую и механическую помощь людям с ограниченными возможностями. Если бы сын твоего лучшего друга был парализован и ты мог бы ему помочь, неужели не помог бы? Вот что побудило к действию создателей компании Willow Garage, одного из крупнейших разработчиков роботов в Кремниевой долине. Мне это напомнило о том, как Александр Белл изобрел телефон: он изначально пытался найти способ помочь своим глухим жене и дочери. В случае Willow Garage сын одного из друзей был уже почти взрослым мужчиной, но не мог обходиться без посторонней помощи.

В ближайшем будущем ему грозило оказаться в учреждении для инвалидов. Теперь рядом с ним находится человекоподобный робот, благодаря которому он живет как все. С помощью своего друга-робота молодой человек может обслуживать себя сам. При помощи двусторонней видеосистемы он также может направлять робота, чтобы тот мог перемещаться в другом физическом пространстве и взаимодействовать с другими людьми по команде пользователя. Одна из самых трудных задач — сделать робота ближе к человеку. Роботы обладают бóльшими механическими возможностями, чем люди, что делает их идеальными исполнителями рутинных заданий. Промышленные роботы изменили не одно производство: каждый день по всему миру работают более 1,2 млн промышленных роботов. Но многие из них заперты в клетки, как следует отгорожены от человека, чтобы не допустить контакта: одно движение их руки может убить. Они запрограммированы совершать движения с определенной скоростью и целью. Они мастерски работают на конвейерах, легко превосходят человека бесперебойностью и точностью движений при выполнении конкретных задач. Заботиться о другом человеке — совсем другая история. Таким роботам нужно реагировать на тактильный контакт, держать чашку, не разбивая ее, и чувствовать движения человека, которому помогают. Иными словами, создателям нужно передать им все умения и способность к обучению человека. До Франкенштейна нам еще очень далеко.

Разработчики постоянно расширяют возможности механизмов, и грань между промышленными и непромышленными роботами стирается. Бакстер — первый пример такого устройства. Он создан бостонской компанией Rethink Robotics — стартапом, основанным Родни Бруксом. Бакстер был представлен общественности в сентябре 2012 г.; он стоит скромные 22 тыс. долларов и показывает, как роботы становятся все удобнее в пользовании. Вместо того чтобы приводить в движение руку, как обычно бывает у промышленных роботов, мотор приводит в движение пружину, а та — руку. Рука может чувствовать, когда она натыкается на что-то, и останавливаться. Согласно рекламе Rethink Robotics, роботу не нужны защитные ограждения и программирование. Рабочие на конвейере могут обучать Бакстера вручную. Он так разумен и так прекрасно адаптируется, что, по сообщениям прессы, лаборатория MIT Media Lab в конце 2013 г. занялась его обучением для выступления в живом шоу вместе с фокусником Марко Темпестом. Цель проекта — показать, как Бакстер умеет сочетать спланированные движения с расчетами, которые позволяют ему приспосабливаться к вариативности в программе Темпеста.

Необходимо существенное развитие технологий, чтобы улучшить когнитивные способности роботов, но многие составляющие революционных футуристических систем будут готовы уже в ближайшие пару десятилетий. Такие устройства могут полностью исключить необходимость человеческого труда в некоторых отраслях производства, причем полная автоматизация экономически будет более эффективной, чем перенос в развивающиеся страны. Даже там роботы могут вытеснить местную рабочую силу в таких отраслях, как электроника. Это, возможно, приведет к снижению заработной платы или потере мест многими людьми. Роботы в сфере здравоохранения и ухода за пожилыми людьми станут особенно важны и получат широкое распространение по мере того, как они будут учиться все лучше взаимодействовать с людьми. Уже сейчас они выполняют некоторые специальные задачи в больницах: помощь при операциях, в том числе роботизированная хирургия под контролем опытных врачей. Система da Vinci состоит из пульта хирурга, который обычно находится в одном помещении с пациентом, и платформы с четырьмя интерактивными роботизированными руками , контролируемыми с пульта. Три из них предназначены для устройств, держащих предметы, и могут также использоваться как скальпели, ножницы и другие хирургические инструменты. На четвертой установлена камера с двумя линзами, которая передает хирургу на пульт полное изображение. Хирург сидит за пультом и смотрит на трехмерное изображение через два окуляра, управляя руками робота при помощи двух ножных педалей и двух джойстиков. Система da Vinci измеряет, фильтрует и переводит движения руки хирурга в более точные микродвижения инструментов, работающих внутри тела через маленькие надрезы. Роботы da Vinci работают в нескольких тысячах клиник по всему миру, в 2012 г. ими было проведено 200 тыс. операций (чаще всего это гистерэктомии и простатэктомии). Япония и Южная Корея активно инвестируют в разработку роботов, способных помогать пожилым в повседневной жизни.

робот и человекОжидается, что военные будут увеличивать масштабы применения автономных систем, в том числе роботов и беспилотных летающих аппаратов, чтобы снизить использование людей в ситуациях повышенного риска, а также в качестве защиты от быстрорастущих расходов на персонал. Роботы уже привычно используются для обследования и при необходимости детонирования закрытых пакетов с бомбами или уничтожения других подозрительных предметов. Робот контролируется при помощи джойстика человеком, который получает с камер информацию, чтобы направлять машину к цели и командовать, когда она доберется до места. Вручную позиционировать роботов для устранения или детонирования взрывного устройства — дело долгое и трудоемкое. Автономный робот может существенно ускорить процесс, если сам будет постоянно виртуально контролировать ситуацию при помощи сенсоров. В результате оценка ситуации и принятие решения будет осуществляться гораздо быстрее, чем у человека.

Переход к безоператорной системе, несомненно, ускорится при развитии искусственного интеллекта для роботов и беспилотных летательных аппаратов и быстром распространении сенсоров в мире «всеобъемлющего интернета», в который мы стремительно вступаем. Возможно, в будущем войны будут вестись автономными солдатами-роботами, беспилотными наземными транспортными средствами и летательными аппаратами с очень небольшим участием человека. Такой сценарий вызывает достаточные опасения, чтобы ООН и Human Rights Watch призывали к запрету роботов-убийц. На сегодняшний день их стоимость стала одновременно и движущей силой, и барьером на пути внедрения роботизированных технологий. Роботы все еще дорого обходятся покупателю, но их способность раз за разом выполнять задания эффективно и быстро, снижать количество отходов или минимизировать расходы на рабочую силу экономит деньги компаний.

Производители могут отдавать дорогостоящих роботов потребителям в лизинг, и все же стоимость роботов должна существенно уменьшиться, чтобы они получили широкое распространение. Главным ограничением для развития непромышленных роботов становится уровень развития технологий: ученым надо преодолеть существенные препятствия в развитии интеллекта роботов, включая способность понимать окружающий мир, справляться с неожиданными событиями и взаимодействовать с человеком. И тем не менее теперь, когда в продаже появилось столько технологий, открывающих новые возможности, мы наблюдаем, как новое поколение разработчиков и энтузиастов создает новые роботизированные решения, которые все лучше приспосабливаются к окружению.

В McKinsey Global Institute убеждены, что не за горами времена настольных устройств для секвенирования (определения структуры) генов. Не исключено, что в будущем это станет частью стандартной диагностической процедуры врача: «Возможность проводить генетическое секвенирование для всех пациентов, а также всех вирусов, бактерий и раковых клеток, влияющих на их здоровье, позволит точнее подбирать лечение для каждого из них. Секвенирование также может помочь медикам понять, может ли набор симптомов, рассматривавшихся ранее как одно заболевание, на самом деле быть вызванным рядом различных факторов».

Точность молекулярной диагностики, основанной на секвенировании гена в комбинации с анализом больших данных и искусственным интеллектом, могла бы полностью изменить медицину. Сейчас медики борются за то, чтобы распознавать различные заболевания со схожими симптомами. Результатов приходится ждать несколько дней, в итоге происходит задержка в постановке диагноза, а это может навредить пациенту. Аппараты для диагностики и обнаружения болезнетворных организмов будут ключевыми технологиями, открывающими новые возможности в лечении заболеваний. Устройства для молекулярной диагностики произведут в медицине революцию, позволив проводить быстрые исследования как генетических, так и патологических заболеваний во время операций. Доступные генетические исследования ускорят диагностику и помогут медикам подобрать оптимальное лечение для каждого пациента. Такой подход в медицине снизит расходы на здравоохранение, связанные с тем, что врачи выписывают медикаменты, которые не дают эффекта.

Очевидно, врачам потребуется время, чтобы привыкнуть работать бок о бок с роботами. И все же исследования взаимодействия людей и роботов показывают, что постепенно диалог между ними становится все более естественным. Дети и вовсе с трудом отличают робота от взрослого человека. Уровень комфортности взаимодействия с Ватсоном будет зависеть от поколения: молодым проще его принять, старшие профессионалы будут работать с ним неохотно. Способы использования Ватсона бесконечны и не ограничены медициной. Будет невероятно интересно наблюдать за тем, как новый поток знаний, возникший благодаря новому пониманию генетики, может быстро найти применение в больницах и кабинетах врачей благодаря интеллектуальной мощи Ватсона.