Согласованная активность в мозге взаимодействующих людей свидетельствует о взаимопонимании

Ученые из Нидерландов обнаружили, что при установлении взаимопонимания между двумя людьми согласовываются активности определенных участков правых височных долей их головного мозга. Активность в этих областях усиливалась с увеличением времени взаимодействия, а также с повышением эффективности совместного решения задач парой испытуемых. Интересно, что активность не зависела от конкретных действий испытуемых и в ее фазах не было задержки, которая необходима для обработки информации, поступающей от партнера.

 

<b>Рис. 1.</b> Схема эксперимента

Рис. 1. Схема эксперимента

Рис. 1. Схема эксперимента. Человек, передающий сигнал, может только двигать свою фигуру (синий круг), чтобы общаться с напарником. Напарник, находящийся в другой комнате, видит движения фигуры первого участника на экране. Участник, который ходит первым, должен в итоге не только правильно разместить свою фигуру, но еще и объяснить своему напарнику, куда тот должен ходить и в какую сторону повернуть свою фигуру (оранжевый треугольник). Схема из обсуждаемой статьи в PNAS.

Взаимодействие между двумя людьми представляет собой необычайно сложный процесс, в ходе которого, например, мы неким загадочным образом правильно догадываемся не только о подходящем в данном случае смысле многозначного слова, употребленного собеседником, но и правильно интерпретируем его жесты, намеки, отсылки к нашему общему опыту, цитаты из художественных произведений и многое, многое другое. Ученым из Нидерландов удалось зафиксировать активность определенных участков мозга, соответствующую подобному рождению общих смыслов и возникновению понимания между двумя людьми.

В ходе эксперимента паре испытуемых нужно было совместно решить как можно больше задач. Оба видели перед собой экраны и могли передвигать по ним фигуры, но только один из них знал конфигурацию, которую необходимо составить. Он мог общаться со своим напарником, только передвигая по полю свою фигуру. Предположим, что искомая конфигурация — это синий круг в левом верхнем углу поля и оранжевый треугольник в правом нижнем. Сначала первый участник (в статье он называется “Communicator”), которому известна конечная конфигурация, передвигает свою фигуру — синий круг — по полю. Ему нужно не только поставить ее на правильное место, но и каким-то образом передать своему напарнику (“Addressee”) информацию о том, куда тому надо ходить. К примеру, он может задержать свою фигуру на поле, на которое должен поставить свою фигуру его напарник. Если от напарника требуется еще и правильно повернуть эту фигуру, то нужно найти способ указать направление поворота.

Первый участник, передающий сигнал, мог думать над своим ходом сколько угодно, но на осуществление комбинации ему давалось пять секунд. После этого ход передавался его напарнику, который должен был поставить свою фигуру и повернуть ее так, как, по его мнению, указал его напарник. Если в итоге получалась искомя конфигурация, паре добавлялось очко и они получали новую задачу (рис.1).

Со временем все пары участников разрабатывали свой «язык», с помощью которого один игрок объяснял другому, как нужно перемещать фигуру, чтобы правильно решить задачу. При этом, в зависимости от конкретной задачи, участники эксперимента использовали разные способы объяснения. Ученым было интересно выявить, как меняется активность мозга испытуемых с улучшением их взаимопонимания. Для этого во время решения задач активность мозга обоих участников записывалась методом магнитно-резонансной томографии.

Сравнивая результаты сканирования мозга напарников, ученые выявили у них согласованную активность в правой верхней височной извилине. Динамика этой активности повторяла динамику взаимопонимания, которое измерялось в доле успешно решенных задач. Активность в правой верхней височной извилине была выше при решении уже знакомых задач, чем при решении новых. Однако корреляция активностей в правой верхней височной извилине у напарников была значительно сильнее, если они решали новые для себя задачи, чем если они выполняли уже знакомые задания. Таким образом, согласованная активность этих областей соответствовала установлению взаимопонимания между двумя людьми в процессе решения задачи (рис. 2).

Рис. 2. Области мозга, в которых наблюдалась активность, и графики этой активности

Рис. 2. Области мозга, в которых наблюдалась активность, и графики этой активности

Рис. 2. Вверху — области мозга, в которых наблюдалась согласованная активность у участников, передающих и воспринимающих сигнал в ходе взаимодействия. Communicators (участники, передающие сигнал) — синий цвет, Addressees (участники, принимающие сигнал) — оранжевый, Conjunction (зона пересечения двух активностей) — желтый; Heschl's gyrus — извилина Гешля, или поперечная височная извилина. Внизу слева — успешность решения известных и новых задач в зависимости от времени (зеленые графики). Внизу справа — активности в правой верхней височной извилине у участников, передававших (синий график) и воспринимавших (оранжевый график) сигнал. Успешность решения новых задач участниками взаимодействия соответствовала активностям у них в этих областях мозга. (Known — старые задачи, Novel — новые.) Рисунок из обсуждаемой статьи в PNAS.

Интересно, что не было выявлено задержки между активностью в мозге человека, передающего сигнал (который делал ход первым), и человека, воспринимающего его. Для сравнения, в контрольном регионе (располагавшемся в левой центральной борозде) задержка фаз между передающим и воспринимающим сигнал напарниками составила 7 секунд. Эта активность отвечала сенсомоторным событиям, то есть непосредственному восприятию ходов напарника, а также собственному ходу. Разница во времени между ходами напарников действительно составляла в среднем семь секунд. Активности же в правой верхней височной извилине были согласованными во времени, и никакой задержки в них между передающим и воспринимающим сигнал участниками не было.

Авторы посвятили значительную часть работы контрольным экспериментам, в которых установили, что согласованная активность в правых верхних височных извилинах испытуемых действительно связана с установлением взаимопонимания между ними, а не с какими-то другими внешними или внутренними факторами, которые влияли на испытуемых одинаково. Похожие действия во время решения задач (такие, как движения глаз) отпадают, поскольку, как уже упоминалось, между соответствующими активностями была бы задержка. Дополнительные контрольные анализы исключили влияние звука, визуальных стимулов и общих составляющих эксперимента для двух испытуемых (поскольку оба участника эксперимента находились в томографах, видели перед собой одинаковые экраны и использовали одинаковые устройства, чтобы передвигать фигуры, нужно было исключить влияние всех общих факторов на наблюдавшуюся синхронную активность). Для этого сравнивались активности мозга пар, которые работали вместе, а также активности мозга двух случайных участников, один из которых передавал информацию в одной паре, а другой — воспринимал информацию в другой паре. Никакой согласованности между активностями таких случайно выбранных участников, которые на самом деле не взаимодействовали между собой, но находились в одинаковых условиях, не было. Активности в правой верхней височной извилине были согласованными только у людей, работавших в паре.

Интересно, что для согласованной активности были характерны низкие частоты — ее период составлял 25–100 секунд, тогда как решение отдельной задачи занимало, в среднем, менее 20 секунд. Таким образом, эта активность не соответствует решению отдельной задачи, и ее можно скорее охарактеризовать как «сигнал о взаимодействии как таковом». Как уже упоминалось, с увеличением времени взаимодействия и с увеличением успешности совместного решения задач (то есть с установлением взаимопонимания) активность в правой верхней височной извилине усиливалась у обоих участников, причем согласованно.

Когда мы общаемся с другим человеком, мы оба осознаем это взаимодействие. Новое исследование говорит о том, что знание о взаимодействии и его успешности согласованно обновляется и поддерживается в определенной области нашего мозга, пока взаимодействие идет. Такое постоянное обновление данных о взаимопонимании, возможно, необходимо для правильной интерпретации сигналов, которые, вообще говоря, могут иметь совершенно разные смыслы в зависимости от контекста и предыстории взаимодействий.

Источник: Arjen Stolk, Matthijs L. Noordzij, Lennart Verhagen, Inge Volman, Jan-Mathijs Schoffelen, Robert Oostenveld, Peter Hagoort, and Ivan Toni. Cerebral coherence between communicators marks the emergence of meaning // Proceedings of the National Academy of Sciences. 2014. Doi:10.1073/pnas.1414886111.

Юлия Кондратенко

http://elementy.ru/news?newsid=432377