Учёные впервые расшифровали произвольные слова в мозге

Рентгеновская томограмма головы добровольца с установленным массивом электродов (фото Adeen Flinker, UC Berkeley).

Новый эксперимент приближает время, когда парализованные люди смогут полноценно общаться при помощи декодируемой мысленной речи. Возможно, развиваемый метод также пригодится для налаживания связи с пациентами, находящимися в коме или состоянии минимального сознания. Пока, правда, технология сырая и делает первые шаги.
Брайан Пэйсли (Brian Pasley), Роберт Найт (Robert Knight) и их коллеги из Калифорнийского университета в Беркли воспользовались помощью 15 пациентов, которым делали операции на мозге в связи с опухолью или эпилепсией.

Этим добровольцам вживили 256 электродов в верхнюю (STG) и среднюю (MTG) височные извилины, где находятся зоны, отвечающие за восприятие звуков, в том числе – понимание речи.

Учёные решили прояснить, как реагируют клетки в этих областях, когда человек слышит слова. А дальше авторы работы составили программу, способную синтезировать звуки по картине активности коры.

Общий подход, применённый калифорнийской командой, был идентичен тому, что использовался в опыте с чтением из мозга зрительных образов.

Сначала испытуемые прослушивали по 5-10 минут разговоров, а в это время компьютер записывал сигналы с электродов. Затем, после наработки обширной библиотеки соответствий, исследователи создали две пробные модели, способные реконструировать звуки, которые слышит пациент, по одной лишь активности нейронов.

При этом учёные выявили в картине отклика клеток реакцию на узкие полосы звуковых частот. Потому программа не узнавала отдельные шаблонные слова путём простого сравнения, но спускалась на уровень глубже – она восстанавливала спектрограмму слов. И важно, что это могли быть слова, ранее не использованные в эксперименте.
 
Схема эксперимента. Электроды на поверхности коры (красные точки справа) записывают сигнал от нейронов в то время, когда человек слушает речь в динамиках (образец слева). Изменение потенциала во времени (внизу справа) накладывается на модель реконструкции звука (внизу в центре).

В результате компьютер выдаёт восстановленную спектрограмму (внизу слева). Она показывает распределение мощности акустического сигнала (отражено цветом на диаграмме) в зависимости от частоты (шкала по вертикали, кГц) и времени (по горизонтали, секунды) (иллюстрация Brian N. Pasley et al./ PLoS Biology).

Для проверки правильности реконструкции синтезированная спектрограмма сравнивалась со спектрограммой воспроизведённого через динамики исходного слова, а ещё – переводилась в реальный звук.

Оказалось, что машина позволяет восстанавливать произвольное слово с приемлемой степенью похожести (что оценивалась и на слух) после всего одного предъявления этого слова испытуемому.

«У этой работы двухсторонний характер. — заявил Найт. – Это фундаментальная наука, понимание того, как работает мозг. А цель – протезы для людей с нарушениями речи. Аппарат воспроизводил бы то, что они не могут произнести, но могут представить, что они хотят сказать».

Пэйсли пояснил идею: «Существует ряд доказательств, что при прослушивании звука и воображении звука активируются аналогичные области головного мозга. Если вы можете понять отношения между мозговой записью и звуками, вы способны либо синтезировать звук, о котором человек думает, либо просто написать слова».

Брайан сравнил данную технику со способностями профессионального пианиста, который может просто смотреть на клавиши под пальцами другого музыканта, находящегося в звуконепроницаемой комнате, и «слышать» музыку.

А) Шесть слов для примера. Вверху — исходные спектрограммы, внизу – реконструированные. Шкалы: килогерцы по вертикали, секунды по горизонтали. B) Отклик нейронов на один из звуковых образцов. C) Распределение веса сигналов от разных групп клеток (цветная шкала) в модели реконструкции звука. Пунктирный прямоугольник – область с задействованными в опыте электродами. Масштабная линейка – 1 см (иллюстрация Brian N. Pasley et al./ PLoS Biology).

Добавим, что исследователи не первый раз экспериментируют с сопоставлением услышанных или произносимых про себя слов с рисунком активности нейронов. Ранее учёные уже записывали отпечатки звуков в коре головного мозга и извлекали из головы парализованного и немого человека отдельные форманты.
Распознавание нескольких слов тоже достигнуто. Но словарный запас той программы невелик, да и точность работы невысока.


http://www.membrana.ru/particle/17513